MAPK specificity in the yeast pheromone response independent of transcriptional activation
نویسندگان
چکیده
The mechanisms whereby different external cues stimulate the same mitogen-activated protein kinase (MAPK) cascade, yet trigger an appropriately distinct biological response, epitomize the conundrum of specificity in cell signaling. In yeast, shared upstream components of the mating pheromone and filamentous growth pathways activate two related MAPKs, Fus3 and Kss1, which in turn regulate programs of gene expression via the transcription factor Ste12. As fus3, but not kss1, strains are impaired for mating, Fus3 exhibits specificity for the pheromone response. To account for this specificity, it has been suggested that Fus3 physically occludes Kss1 from pheromone-activated signaling complexes, which are formed on the scaffold protein Ste5. However, we find that genome-wide expression profiles of pheromone-treated wild-type, fus3, and kss1 deletion strains are highly correlated for all induced genes and, further, that two catalytically inactive versions of Fus3 fail to abrogate the pheromone-induced transcriptional response. Consistently, Fus3 and Kss1 kinase activity is induced to an equivalent extent in pheromone-treated cells. In contrast, both in vivo and in an in vitro-reconstituted MAPK system, Fus3, but not Kss1, exhibits strong substrate selectivity toward Far1, a bifunctional protein required for polarization and G(1) arrest. This effect accounts for the failure to repress G(1)-S specific transcription in fus3 strains and, in part, explains the mating defect of such strains. MAPK specificity in the pheromone response evidently occurs primarily at the substrate level, as opposed to specific kinase activation by dedicated signaling complexes.
منابع مشابه
MAP Kinases with Distinct Inhibitory Functions Impart Signaling Specificity during Yeast Differentiation
Filamentous invasive growth of S. cerevisiae requires multiple elements of the mitogen-activated protein kinase (MAPK) signaling cascade that are also components of the mating pheromone response pathway. Here we show that, despite sharing several constituents, the two pathways use different MAP kinases. The Fus3 MAPK regulates mating, whereas the Kss1 MAPK regulates filamentation and invasion. ...
متن کاملFus3-Regulated Tec1 Degradation through SCFCdc4 Determines MAPK Signaling Specificity during Mating in Yeast
Signaling specificity is fundamental for parallel mitogen-activated protein kinase (MAPK) cascades that control growth and differentiation in response to different stimuli. In Saccharomyces cerevisiae, components of the pheromone-responsive MAPK cascade activate Fus3 and Kss1 MAPKs to induce mating and Kss1 to promote filamentation. Active Fus3 is required to prevent the activation of the filam...
متن کاملThe filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae.
In the budding yeast S. cerevisiae, nutrient limitation induces a MAPK pathway that regulates filamentous growth and biofilm/mat formation. How nutrient levels feed into the regulation of the filamentous growth pathway is not entirely clear. We characterized a newly identified MAPK regulatory protein of the filamentous growth pathway, Opy2. A two-hybrid screen with the cytosolic domain of Opy2 ...
متن کاملNuclear relocation of Kss1 contributes to the specificity of the mating response
Mitogen Activated Protein Kinases (MAPK) play a central role in transducing extra-cellular signals into defined biological responses. These enzymes, conserved in all eukaryotes, exert their function via the phosphorylation of numerous substrates located throughout the cell and by inducing a complex transcriptional program. The partitioning of their activity between the cytoplasm and the nucleus...
متن کاملMitogen-activated protein kinases: specific messages from ubiquitous messengers.
Signal transduction networks allow cells to perceive changes in the extracellular environment and to mount an appropriate response. Mitogen-activated protein kinase (MAPK) cascades are among the most thoroughly studied of signal transduction systems and have been shown to participate in a diverse array of cellular programs, including cell differentiation, cell movement, cell division, and cell ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 11 شماره
صفحات -
تاریخ انتشار 2001